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Figure 5. Test set graph of next-day predicted values
Fall 15 from plotted over actual value. Red signifies actual
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* The Keras LSTM library was implemented as Figure 2. Activity level as a function of semester and hour. prediction. Score was calculated using the following
the machine learning model. The model took In School semester and hour are strong predictors of activity formula:
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was Adam. Loss was calculated using ‘Mean 6
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