
Robustness Tests
These various cases were tested to determine the robustness of our algorithm and

are implemented in our test dataset:

• Individuals from a wide range of heights walking in view

• Many entities in view at once

• Child carried on person’s shoulders or back

• Entities wearing hats, backpacks, bags, or purses

Moving Forward
• Deploy a visually appealing secure setup of the Kinect system at PDSC

• Publish headcount and height data on CASAS servers

• Create a visual display of the Kinect data at PDSC

• Annotate test dataset

• Optimize code to better handle child patrons at PDSC

Conclusion
Our head tracking system struggled in various edge cases:

• Small children/heads (parameters can be tuned)

• When a person was carried on another’s shoulder/back

• When arms were raised above one’s head

• Person walked out of left or right edge of view before crossing line

Although, this test set was meant to see what will break our algorithm we will

have to later refine it to better handle these various edge cases because they

could still occur at PDSC.

Results

Table 1: Accuracy of Head Tracking Algorithm

Table 2: Actual vs. Measured Height of Entities

It should be noted that the test dataset is not representative of an average

dataset/day at PDSC and was designed to test the robustness of our system.

Acknowledgments
We would like to thank the National Institutes of Health & the National

Institute of Aging and their generous support of the GSUR program under grant

1R25AG046114.

References
1Zhang, X., Yan, J., Feng, S., Lei, Z., Yi, D., and Li1, S. Z., 2012, Water Filling:

Unsupervised People Counting via Vertical Kinect Sensor, IEEE.

Introduction
The Palouse Discovery Science Center (PDSC) in Pullman has requested a head

counting/tracking system to track the number of patrons coming in and out of

their building as well as their corresponding heights (adult or child). Gathering

accurate headcount data through traditional surveillance can be intrusive and is

not ideal for a family friendly facility or in a (smart) home environment. Our

solution utilized an unsupervised learning method and entity tracking algorithms

coupled with depth maps from a ceiling mounted Microsoft Kinect V1 above

entry ways.

Methods and Algorithms

Head Count/WaterFill Algorithm1:

The WaterFill algorithm works as follows, people/heads are identified as the

foreground of the image by using a Gaussian mixture model background subtraction

method. The statistical nature of this subtractor allows for the WaterFilll algorithm to

adapt to a dynamically changing background.

d. Depth image greyscale e. Foreground/subtracted background

After filtering out objects in the foreground image that have contours (boxed

outline over head) with area’s smaller then some threshold value, the initial depth

map’s pixels are all turned to one except for the pixels corresponding to white regions

on the filtered foreground region. Now conceptually ‘water drops’ are dropped and

randomly distributed over the filtered depth map in all regions that aren’t equal to one

and travel in the direction of descent. All of these drops are kept track of in a separate

blank image representing areas where ‘water’ collected (f). This water image is then

filtered of noise by eliminating regions that did not reach the threshold of depth. The

contour boxes of the remaining water filled regions now correspond to heads and can

be seen drawn on image (d) in the final image (g).

f. Greyscale representation g. Contour box/head

of water filled regions

Head Tracking Algorithm:

Our head tracking algorithm determines which contour boxes are the same

between frames by producing a predicted path for each head in the current frame.

This is path is produced by weighting each of the head’s previous movements (x and

y’s difference) and dividing the sum of these products by the sum of weights in order

determine a mean and then adding the mean to the center of the head’s current x,y

coordinates. Each current head is then matched to the next frame’s contour boxes by

assigning each one to a current contour box with the shortest Euclidean distance to

it’s projected path. Other threshold limiting the distance a head can move between

frames also helps prevent occlusion errors. With this head tracking algorithm we

created a head count system in which a head had to cross two lines in order to

increment the in/out counter (seen in figure g).

Hardware/Software
Two major components for our research was a Microsoft Kinect V1 infrared

camera and an open source driver that allowed us to pull depth map frames in

C++ on a Linux machine called libfreenect. Instead of color value being

contained in a pixel, depth maps contain a pixel value equal to the distance away

from an object in a traditional RGB image.

a. Microsoft Kinect V1 b. Depth image c. RGB image

The data received by our Kinect system is shipped to the middleware servers

called SHiB’s (Smart Home in a Box) through the utilization of the XMPP

protocol and the Gloox C++ library. This protocol allows for sensor agents to

subscribe and publish to various channels hosted by the SHiB servers.

Entity Counting and Tracking Using Microsoft Kinect Depth Maps

Jared Meade, Sheree Enlow, Brian Thomas, Aaron Crandall

School of Electrical Engineering and Computer Science, Washington State University

Field of

view

h1

h2

Determining Head Height
h1-h2 = height. For a more robust solution we

created a method of determining the floor distance

from a sample of initial images. The first 30 depth

images (1 sec worth) are taken and a 5x6 portion of

the images centered in the middle is assumed to be

the floor and each value is stored. Next, each pixel in

30 more images is iterated through and if the pixel is

within one standard deviation from the mean of our

stored floor values it is added to the list of floor

values. After all 60 initialization images have been

processed we find the mean of our floor list and use

this value as the constant floor to Kinect distance.

