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Introduction

* Using a data driven approach, we attempted to determine what * The graph below demonstrates how our algorithm finds the best
tests and cognitive domains (memory, executive function, and correlation coefficient for an output variable.

processing speed) contribute more to various performance
measures on a natural assessment of functional ability 1n a mixed

Methods

* We used the following 3 different methods for predicting missing
data: predicting each input variable with other input variables, data
imputation, and joint prediction.

 Experiments have been done with 10 folds cross validation. Numberinefficient

0.45
sample of older adults. * Machine learning methods and correlation coefficients (7) of the 3, o
regression model for predicting each input variable can be found 1n £
O 0.35
the table below. ©
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* 75 with Mild Cognitive Impairment (MCI) Lionrsasr VIAS SD list Lionrsasr Number of Variables
* 13 with Dementia , 0.5668 ; 0.8764
4 : : , . Regression recall Regression ,
* 19 with Parkinson’s Disease (PD) Linear MAS list * In the chart below, the optimum number of tests that we need to
* 14 with PDMCL N Category fluency SSUUERNISRIRLTE VM 0-8265 predict each outcome variable is displayed.
* 57 with other medical conditions Category fluency R NCTERRR VIAS delayed | R 0.5536 * The domain distribution for required variables to predict each
switching prose recall ; outcome is also shown.
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* The table below contains strengths (#) of our prediction for
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* Memory < P 2

. MAS list acquisition 0.3928 0.4082 0.3918 0.416 :

. MAS short delay (SD) list recall 0.3346 0.236 0.3401 0.3357 W Executive Memory M Processing Speed

* MAS long delay (LD) list recall 063373538 064316927 g;:g: gggij

* MAS delayed prose recall | | | | o

0.4741 0.4979 0.4759 0.4858 Conclusion and Futur
, . . o 0.4512 0.4294 0.4594 0.4676 , ,

* Speed of Processing ?“nlgmal Ability (Day Out 02935 0,299 04075 0217 » We determined the optimum number of tests for
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e SOMT wiitten formaf . Accuracy | o predicting specific performance measures on the DOT.

written 1orma | * The flowchart of our algorithm to find the best combination . ..
e SDMT oral format » Total time * Tests of executive functioning & memory are more
* Design fluency * Sequencing Missing data Feature selection by important in predicting functional ability on the DOT
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than tests of processing speed.

* Using these results, we plan to build a model based off
of performances on these tests to predict DOT
performance.



