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Introduction

Sample
• 452 Older adults (Mage =  67.3, Range: 47 - 97)

• 274 healthy older adults
• 75 with Mild Cognitive Impairment (MCI)
• 13 with Dementia
• 19 with Parkinson’s Disease (PD)
• 14 with PDMCI
• 57 with other medical conditions

Methods Results

Methods

Conclusion and Future Works

Neuropsychological Domains and Tests
• Executive Functioning
• Trails B
• Verbal fluency (FAS)
• Category fluency 
• Category switching fluency
• Design fluency (DF)

• Open dots & switching conditions
• Prospective memory measure (PM)
• Temporal order memory measure (TO)

• Memory
• MAS list acquisition
• MAS short delay (SD) list recall
• MAS long delay (LD) list recall
• MAS delayed prose recall

• Speed of Processing
• Trails A
• SDMT written format
• SDMT oral format
• Design fluency 

• Solid dots (DF)

•Using a data driven approach, we attempted to determine what 
tests and cognitive domains (memory, executive function, and 
processing speed) contribute more to various performance 
measures on a natural assessment of functional ability in a mixed 
sample of older adults.

•We used the following 3 different methods for predicting missing 
data: predicting each input variable with other input variables, data 
imputation, and joint prediction.
• Experiments have been done with 10 folds cross validation.
•Machine learning methods and correlation coefficients (r) of the 

regression model for predicting each input variable can be found in 
the table below.

DOT

OUTCOME VARIABLES
RAW DATA PREDICTED DATA

DATA 

IMPUTATION

JOINT 

PREDICTION

EFFICIENCIES 0.3928 0.4082 0.3918 0.416
INEFFICIENCIES 0.3346 0.236 0.3401 0.3357
INACCURACIES 0.3758 0.4197 0.3903 0.4059
SEQUENCING 0.333 0.362 0.3878 0.3914

ACCURACY 0.4741 0.4979 0.4759 0.4858
TOTAL TIME 0.4512 0.4294 0.4594 0.4676

AVERAGE 0.3935 0.3922 0.4075 0.417
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• The table below contains strengths (r) of our prediction for 
each DOT outcome variable. 
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• The graph below demonstrates how our algorithm finds the best 
correlation coefficient for an output variable.
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• In the chart below, the optimum number of tests that we need to 
predict each outcome variable is displayed.
• The domain distribution for required variables to predict each 

outcome is also shown.

•We determined the optimum number of tests for 
predicting specific performance measures on the DOT.
•Tests of executive functioning & memory are more 
important in predicting functional ability on the DOT 
than tests of processing speed.
•Using these results, we plan to build a model based off 
of performances on these tests to predict DOT 
performance.

• Functional Ability (Day Out 
Task)
• Accuracy
• Total time
• Sequencing
• Efficiencies
• Inefficiencies
• Inaccuracies

• The flowchart of our algorithm to find the best combination 


