Machine learning Techniques for Diagnostic Differentiation of Mild Cognitive Impairment and Dementia

Introduction

 Accurate and cost efficient classification of mild cognitive in (MCI) and Alzheimer's disease (AD) has benefits of personal importance.

•Based on current literature, it appears that machine learning methods are viable dichotomous classifiers (e.g., Chen et al., 2010; Quintana et al., 2012). However, differentiating between MCI, AD, and neurological healthy older adults using a single model has been problematic.

The purpose of the present research is to use neuropsychological and demographic data to predict:

1. Clinical Dementia Rating (CDR) ratings

2. Clinical diagnoses (cognitively healthy, MCI, AD)

Through the implementation of four machine learning models, and a comparison statistical method:

- 1. C4.5 Decision tree
- 2. Naïve Bayes classifier (NB)
- 3. Artificial Neural Network (ANN)
- 4. Support Vector Machine (SVM)
- 5. Multinomial Logistic Regression

A secondary goal of the project is to determine the fewest number of attributes (e.g., neuropsychological tests) required to reliably diagnose individuals.

Method

Participants

• For participant characteristics see Tables 1 and 2. Clinical diagnoses were consistent with Petersen and colleagues criteria, NIA-Alzheimer's Association workgroup, and NINCDS-ADRDA criteria. CDR ratings were provided by a certified rater.

Table 1: Demographic and feature selected neuropsychological data of participants classified using clinical diagnosis

	Con	trol	MC	CI	AD)	
	(n =	161)	(n = n)	97)	(n = 5)	53)	р
Variable or test	Mean	SD	Mean	SD	Mean	SD	
Age (years)	71.14	8.47	71.96	9.43	75.70 ^{ab}	8.26	.005
Education (years)	16.28	2.83	15.52	2.93	16.11	2.83	.04
% Female	74	-	57 ^a	-	45 ^a	-	<.001
TICS	34.85	2.27	32.48 ^a	2.99	24.36 ^{ab}	5.84	<.001
Trails B	79.45	27.37	123.8 ^a	58.4	235.25 ^{ab}	88.03	<.001
Clox 1	12.92	2.08	11.84 ^a	2.36	8.98 ^{ab}	3.47	<.001
Design Fluency – Open dots	10.06	2.87	8.27 ^a	2.76	4.41 ^{ab}	2.47	<.001
Design Fluency – Switching	7.63	2.56	5.88 ^a	2.65	2.18 ^{ab}	2.00	<.001
Functional Status z-score	31	.60	.10 ^a	.83	1.06 ^{ab}	1.82	<.001
Depression z-score	24	.83	.16 ^a	.94	.18 ^a	1.13	.001
Delayed Verbal Memory z-score	.40	.59	 19 ^a	1.02	-1.24 ^{ab}	1.29	<.001
Visual Memory total correct z-score	.60	.67	- .38 ^a	.80	-1.3 ^{ab}	.72	<.001
<i>Note:</i> Scores are raw scores unless otherwise listed. AD = Alzheimer's disease; MCI = mild cognitive							
impairment; TICS = Telephone Interview for Cognitive Status. L-N = Letter Number Sequencing.							
^a differed significantly from control group: ^b differed significantly from MCI group							

Alyssa Weakley¹, Jennifer Williams²

¹Washington State University, Department of Psychology ²Washington State University, School of Electrical Engineering and Computer Science

Table 2. Demographic and feature selected neuropsychological data of participants classified

mpai	rment
and	medical

· 1· · 1 1· · ·							
using clinical diagnosis							
	0		0.:	5	1.0		
	(n = 1)	54)	(n =	(n = 93)		(n = 25)	
Variable or test	Mean	SD	Mean	SD	Mean	SD	
Age (years)	70.06	9.39	74.04	7.97	71.95	9.34	.08
Education (years)	16.13	2.86	15.53	2.89	16.12	2.89	.26
% Female	71	-	58 ^a	-	68 ^a	-	<.001
TICS	34.66	3.36	32.40 ^a	3.36	23.92 ^{ab}	2.38	<.001
Trails A	34.17	11.51	42.50 ^a	3.36	81.76 ^{ab}	58.49	<.001
Letter Fluency	41.17	11.83	35.90 ^a	9.69	22.67 ^{ab}	8.95	<.001
Category Fluency	41.15	8.12	35.09 ^a	9.69	22.09 ^{ab}	8.96	<.001
Category Switch	13.81	2.71	11.24 ^a	3.27	6.18 ^{ab}	3.03	<.001
Design Fluency – Solid dots	8.95	3.01	7.16 ^a	3.17	4.18 ^{ab}	2.28	<.001
Functional Status z-score	25	.69	.17ª	.85	1.72 ^{ab}	1.67	<.001
Immediate Memory z-score	.31	.64	 08 ^a	1.06	-1.09 ^{ab}	1.12	<.001
Visual Delayed Memory z-score	.47	.77	- .18 ^a	.91	-1.31 ^{ab}	.87	<.001
Visual Memory z-score	.49	.78	 21 ^a	.89	-1.32 ^{ab}	.71	<.001
<i>Note:</i> Scores are raw scores unless otherwise listed. AD = Alzheimer's disease; MCI = mild cognitive							
impairment; F = female; M = male; TICS = Telephone Interview for Cognitive Status; L-N = Letter							
Number Sequencing							

^adiffered significantly from CDR = 0; ^bdiffered significantly from CDR = 0.5.

Neuropsychological and Demographic Measures

- Demographic variables: age, education, and gender
- Mental status: Telephone Interview of Cognitive Status (TICS)
- •Depression: Geriatric Depression Scale (GDS)
- •Functional Statues
- •Neuropsychological Performance:
 - Attention/speeded processing (Symbol Digit Modalities Test, Trails A)
 - Verbal learning and memory (RAVLT, Memory Assessment Scales)
 - Visual learning and memory (7/24, Brief Visual Memory Test)
- Executive functioning (Trails B, Clox 1, Design Fluency of D-KEFS)
- Working memory (WAIS-III Letter-Number sequencing)
- Verbal fluency (verbal fluency subtest from the D-KEFS)
- Confrontation naming (BNT)
- Word knowledge (Shipley Institute of Living Scale)

Results

Feature Selection	
•CDR-FS	•C1
•Age	e
•Education	•
•Gender	•
 Functional Status 	•
 Visual memory total correct 	•
•Trails A	•
•Letter Fluency	•
 Category Fluency 	•
•Switch Fluency	•
 Design Fluency – Solid Dots 	•
 Short delay verbal memory 	•
—	

• Long delay visual memory

linical Diagnosis-FS

- •Age
- •Education
- •Gender
- •Functional Status
- •Visual memory total correct •TICS
- •Trails B
- Clox1
- •Design Fluency Open Dots
- Design Fluency Switching
- Depression
- Long delay verbal memory

Table 3: Results from supervised model for original, reduced, and feature selection datasets. This table							
shows the results of modeling for the clinical diagnosis class with and without CDR total							
		CD	CD-r	CD-r_fs	CD_no-cdr	CD-r_no-cdr	CD-r_no-cdr_fs
ND	missing	80.7%	83.9%	92%	76.2%	78.5%	83.3%
NB -	not missing	85.2%	85.2%	93.3%	77.8%	77.5%	81.7%
DT -	missing	74.3%	76.2%	81.3%	65.9%	68.5%	74.3%
	not missing	88.7%	90.1%	91%	79.7%	71.1%	78.5%
SVM	missing	79.1%	66.2%	65.6%	70.7%	62.7%	60.1%
	not missing	86.1%	79.1%	79.4%	79.4%	68.5%	69.4%
NN	not missing	89.7%	90.4%	91.6%	80.3%	78.1%	82%
Logistic Regression	not missing	-	-	-	-	-	86.5%
<i>Note:</i> missing = missing attribute values, not missing = missing values were replaced with average							

Table 4: Results from supervised model for original, reduced, and feature selection datasets, CDR class

NB	missing
	not missing
DT	missing
DI	not missing
SVM	missing
S V IVI	not missing
NN	not missing
Logistic Regression	not missing
Note: missing =	= missing attribute

	▲			
		ss-CDR	ss-CDR-r	ss-CDR-r_fs
NID	missing	78.7%	80.3%	82.3%
NB —	not missing	88.8%	81.2%	83.4%
DT —	missing	68.3%	73.9%	80.3%
	not missing	81.2%	73%	71.9%
SVM —	missing	69.7%	73.9%	76.7%
	not missing	86%	74.2%	77.8%
NN	not missing	80.6%	80.6%	80.6%
Note: missing	g = missing attribute value	es, not missing = miss	ing values were replace	ed with average

•We hypothesized that NB and SVM would provide the greatest accuracy. Based on the results, NB achieved the highest accuracy in all cases. However, our prediction that SVM would also provide a high accuracy rate, was not supported.

•Improved accuracy over a traditional statistical method was observed for CDR classification but not for clinical diagnosis. •We explored the use of feature selection to reduce the number of demographic and neuropsychological data needed to make an accurate classification. We were able to determine which tests were critical when making classification for CDR scores and clinical diagnoses. •The experiments reported in this paper indicate that artificial intelligence techniques can be used to automate aspects of clinical diagnosis and can provide meaningful insights into which attributes are the most valuable for this diagnosis.

CDR	CDR-r	CDR-r_fs
73.9%	75%	80.1%
81.6%	75.75	79.4%
70.2%	65.4%	74.3%
81.6%	68.4%	73.9%
64.3%	64.3%	65.8%
80.9%	69.2%	70.6%
76.9%	75%	77.2%
-	-	77.9%
	1 1	1 • 1

values, not missing = missing values were replaced with average

Table 5: Results from semi-supervised model for original, reduced, and feature selection datasets.

Conclusions