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Table 3: Results from supervised model for original, reduced, and feature selection datasets. This table
shows the results of modeling for the clinical diagnosis class with and without CDR total

Introduction
 Accurate and cost efficient classification of mild cognitive impairment

Table 2: Demographic and feature selected neuropsychological data of participants classified
using clinical diagnosis
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Table 5: Results from semi-supervised model for original, reduced, and feature selection datasets.
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Table 1: Demographic and feature selected neuropsychological data of participants classified

: . : : Note: missing = missing attribute values, not missing = missing values were replaced with average
using clinical diagnosis
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techniques can be used to automate aspects of clinical diagnosis and can provide
meaningful Insights into which attributes are the most valuable for this
diagnosis.




