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The frontal-parietal mirror circuit (FPMC) is active when 

individuals observe or perform a goal-directed behavior1. 

Evidence in macaques and humans suggest that the FPMC is 

extremely robust at the point when individuals code the goal of 

the motor act, enabling an observer to understand an agent's 

intentions2, 3. Recent theoretical hypotheses in the fields of 

computer science and machine learning suggest that data from the 

FPMC may have applications in robotics and artificial 

intelligence4. Recently, EEG data has been used to control brain-

machine interfaces5, 6, move a cursor on a computer screen7, and 

access a smart phone app8.   

 

We used EEG to measure mu- and beta-ERD in left and right 

motor component clusters, while individuals observed and 

imitated an actor engaging in goal-directed actions where the 

outcomes were either ambiguous or unambiguous. We employed 

machine learning algorithms to classify single trial EEG data to 

determine if participants were observing an action vs. non-

movement controls, as well as discriminating between ambiguous 

or unambiguous goals. These results are discussed in the context 

of developing a hands-free, non-invasive neural devices that can 

assist senior citizens with mobility impairments in a Smart Home 

environment.  
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• Consistent with FPMC activation, we demonstrate that mu- and beta-ERD over left 

and right motor component clusters is sensitive to detecting motor goals while 

observing and imitating ambiguous and unambiguous actions.  Single-trial EEG 

data was able to successfully discriminate between ambiguous, unambiguous, and 

control conditions 

 

• Mu- and beta-ERD was stronger in interval B for ambiguous and unambiguous 

conditions versus controls and interval A. 

• Mu-ERD was stronger for ambiguous vs. unambiguous actions during interval 

C. 

• Additionally, naïve bayes classification yielded up to 80% accuracies when 

discriminating between action observation and non-movement controls.   

• Most importantly discrimination between all three  conditions was slightly 

25% above chance 

 

• Previous work has suggested that the FPMC codes for the goal of the action, and 

not simply its transient components; however, increased activation may also be 

driven by task complexity9, 10 

• Further experiments using the entire range of electrodes, components, and 

frequencies could alleviate the effect of inter-trial variability during machine 

learning. 

 

• The use of EEG in BMIs to discriminate between brain activity during action 

planning and observation is critical for the development of non-invasive devices 

that could be used to detect falls.  In order to minimize errors, BMIs would need to 

be sensitive not just to movement, but a host of other cognitive processes 

associated with motor activity such as action perception.  
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Figure 1.  Task.  Participants were seated in front of a monitor with a large bowl of cereal to their left, a cup rack to their right, and 

a coffee mug directly in front of them.  Participants observed and imitated the following stimuli: Top row) Ambiguous goal.  Actor 

grasped a cup and used it to scoop cereal from the bowl to his left or placed the cup on a cup rack to his right.  Middle) Non-action 

control.   Actor performed no action for entire interval.  Last row) Unambiguous goal.  Actor grasped a cup and used it to drink.  

Each interval was preceded by a 2000 ms fixation cross (EEG baseline).  Additionally, each interval was separated by a 200 ms 

fixation cross.  A green fixation cross was presented after each trial for five seconds, during which the participants imitated the 

action.  This was followed by a red fixation cross which cued the participants to complete the action and return to the “ready” 

position.  This was followed by a blank screen presented at a jitter of 1500 to 3000 ms.   

EEG Results 
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Participants:  

• 16 right-handed participants 

 

Design: 

• 12 blocks – 20 trials each block 

Participants observed and imitated: 

• 96 ambiguous goal videos (scoop 

cereal or hang mug) 

• 96 unambiguous goal videos (drink 

from mug) 

• 48 non-action videos (no action) 

 

 

EEG Analyses: 

• 32 Biosemi active electrodes sampled at 256 Hz 

• Average reference, and band pass filter (1 - 50 Hz)  

• Individual epochs (-2000 to 8200 ms) around onset each trial 

• Movement intervals were removed 

• Trials with excessive noise (+/- 100 mv.) were removed prior to 1st ICA pass 

• Trials with noisy components (+/- 10 mv.) were removed prior to 2nd ICA pass 

• Right and left motor component clusters identified using DipFit2 

• Within 15% residual variance  

• Transformed data in frequency domain (4-60 Hz) in 2.25 sec intervals 

• Right and left clusters analyzed in mu (8-10 Hz) and beta-bands (16 – 22 Hz.) 

Figure 2.  Time frequency plots and statistics for A) left and B) right motor component clusters (within 15% residual variance) across intervals (A, B, and C) for ambiguous, control, and unambiguous conditions. There was a condition x interval interaction in the mu- (8 – 10 Hz) and beta bands (16 – 22 Hz) for both left and 

right clusters.  Mu-ERD during ambiguous conditions was significantly stronger than unambiguous and control during interval C.  Ambiguous and unambiguous conditions were significantly stronger than control during intervals B and C in both the mu- and beta-bands. 

• Components were run through a wavelet analysis, isolating the 

frequencies with the strongest signal to noise ratio for individual 

trials.  

• Individual trials were normalized in reference to the pre-stimulus 

time period, then the period of time containing each video was 

averaged out. A set of “lag” features was also created using the 

difference between the different video intervals. Each feature was 

binned into 10 discrete values. 

• Experiments were run to determine how successful a 

classification algorithm (Naïve bayes) could perform on a trial by 

trial basis. The class distribution was balanced using a 

randomized sub-sampling.   

• As an additional experiment, the two action conditions 

(ambiguous and unambiguous) were combined into one “action” 

and then compared against the control. The results over several 

participants is shown on the right in figure 3. Accuracies of up to 

80% were obtained.  
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Figure 3. Single trial accuracies of individual 

participants between control and activity. The 8-

10Hz range of a single motor component were 

used. 
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